Question Number	Acceptable Answers	Reject	Mark
1(a)	First mark:	Mass of (all the)	2
	Mass of an atom/mass of an	isotope <u>s</u> /atom <u>s</u>	
	isotope (of an element) (1)		
		'Mass of an	
		element'	
	IGNORE any references to average or		
	(weighted) mean		
	Second mark:		
	relative to 1/12 th the mass of a ¹² C		
	atom (1)		
	NOTE: The second mark is awarded		
	for any mention of ¹² C		
	IGNORE throughout the candidate's		
	answer any references to 'moles' or		
	'1 mol' or '12 g'		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject N	Mark
1(b)(i)	{(35 x 75.53) + (37 x 24.47)} ÷ 10 (1 = 35.4894 = 35.49 Answer to 4 s.f. only.)	2
	Correct answer no working (2) IGNORE units of any kind (e.g. 'g' 'g mol ⁻¹ ' 'amu', etc.)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$^{35}\text{Cl}_2^+/(^{35}\text{Cl} - ^{35}\text{Cl})^+$ (1)	⁷⁰ Cl ₂ ⁺ ⁷⁴ Cl ₂ ⁺	2
	$^{37}\text{Cl}_2^+/(^{37}\text{Cl} - ^{37}\text{Cl})^+$ (1)		
	ALLOW (35CI + 35CI) + and/or (37CI + 37CI) + OR (35CI35CI) + and/or (37CI37CI) + OR (35CI and 35CI) + and/or (37CI and 37CI) + If the 'formal' charge is omitted on either ion (or both the ions), then award (1) mark only. NOTE: 35CI + 35CI + and 37CI + 37CI + scores (1) as each ion has an extra + charge. 235CI + and 237CI + scores (1) Accept mass number written as superscript to right of symbol.	2 ³⁵ Cl and/or 2 ³⁷ Cl scores (0)	

Question	Acceptable Answers	Reject	Mark
Number			
2 1 (b)(iii)	(1)		2
	$^{35}\text{CI} - ^{37}\text{CI}^{(+)}$ (1)		
	ALLOW (35CI + 37CI)(+) and/or (37CI + 35CI)(+) OR (37CI35CI)(+) and/or (37CI35CI)(-) OR (35CI and 37CI)(+) and/or (37CI and 35CI)(+)	+)	
	NOTE: The + charge is not needed on this ion		
	IGNORE extra + charges, so ALLOW ³⁵ CI ⁺ ³⁷ CI ⁺ and/or ³⁷ CI ⁺ ³⁵ CI ⁺		

Question	Acceptable Answers	Reject	Mark
Number	· ·	•	
2(a)(i)	Amount Na = 1.73 (g) $\div 23$ (g mol ⁻¹) = $0.075(22)$ (mol) Amount O = 1.20 (g) $\div 16$ (g mol ⁻¹) = 0.075 (mol) (1) IGNORE sf, even if 1 sf		2
	NaO (1)	Na ₂ O ₂	
	Correct answer no working (2)		
	NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e. Amount Na = $23 \div 1.73 = 13.3$ Amount O = $16 \div 1.20 = 13.3$ scores second mark only for NaO if obtained by incorrect working OR e. Use of atomic numbers gives the Na: O ratio as $0.157 : 0.150$ and an empirical formula of NaO. This scores (1) overall (i.e. the 2nd mark). OR e. Use of atomic number ONLY for Na (i.e. Na = 11) gives the Na: O ratio as $0.157 : 0.075$ and an empirical formula of Na ₂ O. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O} = 32$ gives Na ₂ O and scores second mark		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	(NaO = 39 hence molar mass twice that of NaO ∴)	'2NaO'	1
	so Na ₂ O ₂		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	$2Na(s) + O_2(g) \rightarrow Na_2O_2(s)$		2
	All species correct (1)		
	State symbols and balancing (1)		
	NOTE: 2 nd mark is conditional on correct species.		
	NOTE: $2Na(s) + O_2(g) \rightarrow 2NaO(s)$ scores (1)		
	$Na(s) + O_2(g) \rightarrow NaO_2(s)$ scores (1)		
	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$ scores (2)		

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	Moles of $O_2 = 0.075 \div 2 = 0.0375$ OR $1.2 \div 32 = 0.0375$ (mol) (1) 0.0375 mol x 24 dm ³ mol ⁻¹ $= 0.9(0)$ (dm ³) (1) ALLOW 900 cm ³ (units must be		2
	present here)		
	Correct answer no working (2) OR		
	Moles of Na = $1.73 \div 23 = 0.075217$ = moles of O Moles of O ₂ = $0.075217 \div 2 =$ 0.0376085 $0.0376085 \times 24 = 0.903 \text{ (dm}^3)$ or 903 cm^3		
	IGNORE s.f., including ONE s.f.		
	NOTE: If number of moles x 24 (dm³ mol⁻¹) is clearly evident and correctly calculated in stated units, award second mark		

Question Number	Acceptable Answers	Reject	Mark
2(a)(v)	$0.0375 \times 6.02 \times 10^{23}$ (= 2.2575 x 10 ²² (molecules))		1
	= 2.26 x 10 ²² (molecules)		
	IGNORE s.f. unless 1 s.f.		

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. Na ₂ O or allow NaO ₂) NOTE:	Just 'very reactive' OR 'very explosive' sodium forms Na ₂ O ₂ alone	1
	If nitrogen / N ₂ is mentioned as part of a 'list' of substances that can be present in air, award the mark	References to hydrogen in the air Just 'reacts with other substances in the air' (as nitrogen not identified Sodium nitrate	
		formation Just sodium hydroxide formation	

Question Number	Acceptable Answers		Reject	Mark
3(a)	Route 1 by mol of H, C and N			5
	$\frac{0.072}{18} = 0.004 \text{ mol water}$			
	OR 0.008 mol H(atoms)			
	And			
	$\frac{0.176}{44} = 0.004 \text{ mol carbon (dioxide)}$	(1)		
	$\frac{24.0}{24000}$ = 0.001 mol nitrogen N ₂			
	OR			
	0.002 mol N(atoms)	(1)		
	Mass of H + mass of C + mass of N = 0.008 + 0.004 x 12 + 0.028 = 0.084 g	(1)		
	mass of oxygen = $0.132 - (0.008 + 0.004 \times 1)$ = 0.048 g	12 + 028)		
	amount of oxygen = <u>0.048</u> = 0.003 mol 16	(1)		
	empirical formula is C ₄ H ₈ O ₃ N ₂	(1)		
	Route 2 by mass of H, C and O calculated one step	in		
	mass of H = $2/18 \times 0.072 = 0.008 \text{ g}$	(1)		
	mass of $C = 12/44 \times 0.176 = 0.048 g$	(1)		
	mass of N = $24/24000 \times 28 = 0.028 g$	(1)		
	mass of O = 0.132 - (0.008 + 0.048 + 0.028) 0.048 g) =		
	moles of O = 0.003	(1)		
	moles of H = 0.008			

moles of $C = 0.004$ moles of $N = 0.002$	
empirical formula is C ₄ H ₈ O ₃ N ₂	(1)
Route 3 Percentage by mass of each in 0.132 g	ch element
First three marks by either method about	ove.
Then percentages are:	
H - 6.06 C - 36.36 N - 21.21	
So O is 100 – (6.06 + 36.36 + 21.21) 100 – 63.63 = 36.37	=
Mole ratios	
O - 2.27 - allow = or - 0.02 (1)	
H – 6.06, C – 3.03, N – 1.515	
Dividing by smallest gives	
H – 4, C – 2, N – 1, O – 1.5	
empirical formula is C ₄ H ₈ O ₃ N ₂	(1)
The following transferred errors as	re allowed:
If nitrogen gas taken as N, first two m still be awarded for all methods	arks can
Then mass of nitrogen is 0.014 g	
This gives mass of oxygen as 0.062 g	
and amount of oxygen as 0.003875 m	ol (1)
now empirical formula is C ₄ H ₈ O ₄ N	(1)
OR percentage method:	
N - 10.61%	
0 – 46.97%	

Mole	e ratio		
N -	0.7575		
0 -	2.935	(1)	
emp	oirical formula is C ₄ H ₈ O ₄ N	(1)	
Trai	nsferred error for hydrogen		
Two	from first three marks still awarded		
Ther	n amount of hydrogen is 0.004 mol		
	gives 0.003125 mol oxygen birical formula is $C_4H_4O_3N_2$	(1)	
Botl	h the above nitrogen and hydrogen e	rrors	
	ard 1 mark for correct mass of carbon or ect moles of carbon		
Ther	n mass of nitrogen is 0.014 g		
Ther	n mass of hydrogen is 0.004 g		
This	gives 0.004125 mol oxygen	(1)	
Emp	oirical formula is C ₄ H ₄ O ₄ N	(1)	

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)	(12 x 4 + 1 x 8 + 16 x 3 + 14 x 2) n = 132		1
	n = 1		
	So molecular formula is C ₄ H ₈ O ₃ N ₂		
	Some element of working must be shown		
	TE from (a) of nitrogen error can be given only if : (12 x 4 + 1 x 8 + 16 x 4 + 14) n = 132 n = 0.98		
	(which is approximately 1)		
	TE from (a) of hydrogen error can be given only if:		
	(12 x 4 + 1 x 4 + 16 x 3 + 14 x 2)n = 132		
	n = 1.03		
	(which is approximately 1)		
	TE from (a) of nitrogen and hydrogen error can be given only if :		
	(12 x 4 + 1 x 4 + 16 x 4 + 14)n = 132 n = 1.015/1.02		
	(which is approximately 1)		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	Y reacts with HCl/acid so it is an amine /contains NH_2/CO_2 (1)	Just it is a base	3
	It reacts with alkali/NaOH so it is a carboxylic acid/contains CO_2H/NH_3^+ (1)	Just it is an acid	
	It forms a purple colour/reacts with ninhydrin so it is an amino acid (1)		
	OR		
	As it is an amine/contains NH_2/CO_2^- it will react with HCI/acid (1)		
	As it is a carboxylic acid/contains CO ₂ H/NH ₃ ⁺ it will react with alkali/NaOH (1)		
	As it is an amino acid so it forms a purple colour/reacts with ninhydrin (1)		
	Each marking point is independent and requires both the functional group and the test		
	NOTE: It is an amino acid so it reacts with acid and alkali (with neither of first two points) (1)	it is amphoteric (alone)	

Question Number	Acceptable Answers		Reject	Mark
3 (c)(ii)	H H O-H	(1)	C-H-O if bond is clearly to H	2
	2-aminoethanoic aci aminoethanoic acid/glycine Mark independently	(1)	1 - aminoethanoi acid	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)	H ₂ NCH ₂ CONHCH ₂ CO ₂ H		1
	Or NH ₂ CH ₂ CONHCH ₂ CO ₂ H		
	Or HOCOCH ₂ NHOCCH ₂ NH ₂		
	ALLOW		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Or reversed displayed formula		
	ALLOW ionic formulae with H ₃ N ⁺ and CO ₂ ⁻		

Question Number	Acceptable Answers	Reject	Mark
4 (a)	Do not penalize the use of A_r (Mg) = 24.3 at any stage in this question. Penalize SF errors (1 SF, incorrect SF (eg. 0.02) and incorrect rounding to 2 SF (e.g. 0.016)) only once in parts (a – d) Allow 0.0166 Allow fractions (e.g. 1/60)		1
	Amount Mg = $(0.4 \div 24) = 0.016666$ = 0.0167 (mol) Allow Amount Mg = $(0.4 \div 24.3) =$ 0.016461 = 0.0165 (mol)		

Question Number	Acceptable Answers	Reject	Mark
4 (b)	Amount HCI = 1.5 x 22.2/1000 = 0.033333 = 0.0333 (mol) Allow Amount HCI = 2 x answer in (a)		1

Question Number	Acceptable Answers	Reject	Mark
4 (c)	Amount of $H_2 = 400 \div 24\ 000 = 0.016666 = 0.0167\ (mol)$		1

Question Number	Acceptable Answers	Reject	Mark
4 (d)	Ratio mol Mg: HCl: H ₂ = 0.0167 (0.165): 0.0333: 0.0167 = 1:2:1 Allow answers in which the mole ratios of the reactant and products	Just stating the molar ratio	1
	are compared separately		

Question Number	Acceptable Answers	Reject	Mark
4 (e)	$\begin{aligned} & M_r \; (MgCl_2) = 24 + 2 \; x \; 35.5 = \; 95 \; \textbf{(1)} \\ & Mol \; MgCl_2 = (mol \; Mg) = 0.0166666 \\ & (or \; 0.0167 \;) \; \textbf{(1)} \\ & Mass \; MgCl_2 = \; 95 \; x \; 0.0166666 = 1.58 \\ & (g) \; \textbf{3} \; \textbf{sf} \; \textbf{(1)} \\ & Or \; 95 \; x \; 0.0167 = 1.59 \; (g) \; 3sf \\ & Or \; 95.3 \; x \; 0.0166666 = 1.59 \\ & Or \; 95.3 \; x \; 0.0165 = 1.58 \\ & Or \; 95.3 \; x \; 0.0165 = 1.57 \end{aligned}$		3
	Correct answer with no working scores (3) TE on 17(a)		